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Furthermore, Booth's method presupposes a knowledge 
of the orientation which is not generally completely 
available. Since it does not involve plotting contour 
diagrams, it might, however, prove advantageous in the 
case of non-planar molecules. 

I wish to thank Prof. R. W. James for many helpful 
discussions throughout the course of the work, and 
particularly for his valued advice in the formulation of 
the theoretical part of this paper. To the South African 
Council of Scientific and Industrial Research I am 

indebted for a research grant, during the tenure of 
which this work was done. 
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The Phases and Magnitudes of  the Structure Factors* 
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Inequalities among the coefficients of a Fourier series representing the electron density in a crystal 
are derived on the basis that the series represents a positive function. The procedure is formulated 
for obtaining all inequalities which are based on this characteristic of positiveness, and some of the 
simpler ones are listed. :No symmetry properties are required for deriving the inequalities, but they 
may be readily introduced into the inequality relationships. It  is indicated that application of the 
linear transformation theory on hermitian forms may prove fruitful in future investigation. 

An extensive and fundamental system of inequalities 
exists among the coefficients of a Fourier series which 
represents a positive function. The structure factors are 
the coefficients in the Fourier-series representation of 
the positive electron density distribution function for 
crystals. I t  is the purpose of this paper to derive the 
fundamental system of inequalities among the structure 
factors and express them in a useful form.¢ 

By making use of the symmetry characteristics which 
are found in crystals and the Schwarz inequality, 
Harker & Kasper (1948) have derived certain useful 
inequalities among the structure factors. An extension 
of this work has been made by Gillis (1948), who has 
applied some additional inequalities of formal mathe- 
matical analysis. In both cases it was necessary to resort 
to symmetry characteristics and certain standard in- 
equalities in analysis. Implicit in their investigations 
though was the assumption that  their distribution 
function was positive. In recent work on the structure 
of atoms:~ we have found that the electron distribution 
about atoms is accurately determined by a limited 
amount of experimental data since the distribution 
function is positive. This characteristic of positiveness 

* Presented at  the meeting of the Crystallographic Society 
of America, Ann Arbor, Michigan, 7 April 1949. 

t A system of inequalities for the one-dimensional case has 
been found by Achyeser & Krein (1934) in their studies of the 
one-dimensional trigonometric moment  problem. 

:~ To be published (Phys .  Rev . ,  February  1950). Presented 
at  ASXRED Mooting, Columbus, Ohio, December 1948. 
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will be seen to be alone sufficient to yield a system of 
inequalities which limits the phases and magnitudes of 
the structure factors for crystals. 

Symmetry considerations are not basic to the de- 
velopment of the theory. However, it will be shown how 
symmetry relations may be introduced into the final 
results. 

Theory 

The Fourier coefficient, Fh~ z, is defined in terms of the 
electron density distribution function for a crystal, 
p(x, y, z), as follows: 

×exp[ -2n i (hx+ky+lz ) ]dxdydz ,  (1) 

where V is the volume of the unit cell. We construct from 
expression (1) useful hermitian forms which will be 
shown to be non-negative. The forms obtained from 
(1) are 

E E XhkzXh'k'VF~--h',~--k',Z--V 
hkl h ' k T  

1 

= V p(x, y, z) E E Xhk~X~'k'v 
dO J O hkl h ' kT  

1 

× e x p { - 2 n i [ ( h - h ' )  x ~  ( k - k ' )  y+  ( l - l ' )  z]}dxdydz, 
(m=1,2 . . . .  ) ,  (2) 

I2 
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where each summation represents the triple sum over 
each index, Xa~ is an independent variable, and Xa~ ~ is 
the complex conjugate of Xak~. 

Since p(x, y, z) is real, 2'a~ ~ = _ ~ i .  The sextuple sum 
on the right side of equation (2) may be expressed as the 
product of a triple sum and its complex conjugate. The 
right side may  therefore be written f flf  

V p(x, y, z) 
J O J O J O  

x X~uexp[-2ni(hx+l~+lz)]  dxdydz. (3) 

1 

I t  is seen tha t  (3) is non-negative since p(x, y, z) is a non- 
negative function. We therefore have from the left side 
of (2) the non-negative hermitian forms* 

~ Xa~Xa,r~,2'a_a;k_r.~_~,>~O ( r e = l , 2  . . . .  ). (4) 
hkl h'Idl" 

1 

Not only are the inequalities (4) a necessary con- 
sequence of the positiveness ofp(x, y, z), but  it may  also 
be shown tha t  these inequalities (4) are sufficient to 
insure tha t  p(x,y, z) be non-negative. This is of im- 
portance because it implies tha~ any set of inequalities 
which is derived from p(x, y, z) being non-negative is 
contained in the set which we shall derive from (4). To 
prove that  (4) is sufficient to determine a non-negative 
Fourier series we assume tha t  (4) is true and shall show 
tha t  as a consequence p(x, y, z) is non-negative. 

The proof consists in showing tha t  the function 
c o  

~ F~:~Xa Y~Z ~ (5) 
hkl 

is non-negative in every region I X [ < 1 - 3, I Y ] ~< 1 - 3, 
[ Z [ ~< I - 3, where 0 < 3 < 1. The symbol Z* means tha t  
a negative power of any variable which appears in the 
sum (5) must be replaced by  the conjugate complex of 
the variable raised to the absolute value of the power, 
e.g. X -a, h > 0, is to be replaced by X a . Since the density 
function, p(x,y,z), is the limit of (5) as X-->-e ~'~, 
Y-+e ~'~ and Z ~ e  ~''~z, it may  be concluded that  
p(x, y, z) is also non-negative. 

Since the set of numbers ] ~'a~ ] is bounded, the series 
(5) converges uniformly and absolutely in any region 
IXl.<l-~, I r l < l - a ,  IZl<.l-~, where 0 < ~ < 1 .  
I t  may  be shown tha t  (5) is equal to 

c o  

X X F~ ~.~ ~ vX~Xa'Y~Yk'Z~2 v 
hkl h'Ml" 

0 × ( ]  - XX) (1 - Y Y ) ( 1  - Z z ) .  (6)  

To demonstrate this we take a typical term of (5), 
F~ X'nY'~g ~ where m > 0 ,  n > 0 ,  1o>0, and show 
that  it  is contained once in (6). The indices of those 
terms of (6) which contain F,n ' n,-~ as a factor satisfy 

h - h ' = m ,  k - k ' = n ,  1 - 1 ' = - p .  (7) 

* Simple, but  relatively weak inequalities on the coefficients 
m a y  be obtained immediately from (4) by  substituting 
arbi t rary complex numbers for the independent variables Xa~z. 

These relations may  be written 

h=h'+m, k=k '+n,  l = l ' - p , [  
or h ' = h - m ,  k ' = k - n ,  l '=l+p.)  (8) 

In order to obtain all those terms of (6) having F~, ~, _~ 
as a factor, it is important to note tha t  only three of the 
relations (8) may be validly inserted into (6). Otherwise, 
any of the remaining relations ff substituted into (6) 
would allow certain of the indices to take on negative 
values since m,n,p>O. The relations (8) which are 
therefore substituted into (6) are 

h=h'+m, k=k '+n,  l '=l+p.  (9) 

We obtain 
o o  

Z F~, n.-~ X~'+~Xa'Yk'+n-Y k'Zl~z+~ 
h'k'l 

0 x(1-zX)(1-  rr-)(1-z~), (10) 
which may be written 

F~,,~_~,X ~ yn g~(1 - XX)  (1 - Y Y--) (1 - ZZ) 

a'=0 ~'=o z=0 (11) 

the desired result. I f  we set 

~akz=XaYkZ z, ~a.rv=Xa'Yk'Z~', (12) 

expression (6) becomes 

Z ~ Fh--~'.k-k'.,-,'Chk,~h'e," ( 1 - X X )  ( 1 -  Y Y ) ( 1 - Z g )  
hkl h ' kT  

0 
= ( 1 - X X ) ( 1 -  Y Y ) ( 1 -  ZZ) 

x llm ~ ~ Fh_r,~_~.z_r.~h~z~r~v>~0, (13) 
m-...>.¢o hkl h'Ml" 

0 

in view of (4) and X X  < 1, Y Y <  1, ZZ < 1. 
I t  is assumed tha t  the first partial derivatives of 

p(x, y, z) exist and are continuous at  every point. This 
condition is sufficient to insure tha t  the series 

co 

p(x, y, z) = ~ Fh~ zexp [27ri(hx + lcy+ lz)] (14) 
hkl 
- - C O  

converges. In  other words the series (5) converges when 
X = e 9"~, Y = e ~"iy, Z = e ~"iz, and defines a function of 
X, Y, Z which is continuous in the closed region 
I XI~< 1, [ Y J4 1. I g 1 4  1.* I t  therefore follows from 
(13) tha t  

co 

p(x,y,z)= lira ~*FhI:zXaY~Zr>~O. (15) 
.X--+e ~ hkl 
Y . . . + e s ~ N Y  - -  oo  

This completes the proof that  (4) implies tha t  p(x, y, z) 
is non-negative. 

* This assumption, used to complete the proof with mathe- 
matical rigor, is no restriction in the physical sense since the 
in6nite sums m a y  be replaced by  finite sums each having 
a sufficient number  of terms to insure tha t  the resulting 
p(x,  y, z) dif fers from the true one by  an amount  far less than  
tha t  due to the errors arising from experiment. The assumption 
is then certainly justffied. 
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The necessary and sufficient condition for the 
hermitian forms (4) to be non-negative is that  a system 
of determinants involving the Fh~:~'s be non-negative. 
Before discussing these determinants for the three- 
dimensional Fourier series there is an advantage in 
developing in detail the theory of the determinants cor- 
responding to the one-dimensional positive Fourier 
series. The three-dimensional theory follows readily 
from the one-dimensional theory, since both are based 
on the theory of hermitian forms. The major effect of 
increasing the number of dimensions is to complicate the 
notation. 

The one-dimensional problem 
The hermitian forms associated with the one-dimen- 
sional problem may be written* 

m 
~ X h X a ,  Fh_h,>~O (m= 1,2, ...), (16) 

h h "  
1 

where F h is a coefficient in a one-dimensional positive 
Fourier series. The necessary and sufficient condition 

F~I-~I P~I-~2 " "  Fel-en-1 
Fe~_~I F~_~,  ... F ~ _ ~ _ ~  

° ° ° o . . o . . ° ° . ° ° . . °  . . . .  o o .  . . . . .  . o . . . . . . . . . o .  

F e n _ l - e  1 - F e n _ l - e  2 o . ,  -Fen_l-en_ 1 I 
F F_~ ... F_~n_1 

x D =  F~ Fel_~l ... F~_e~_l 
• . . . . . . . o . O . . . o . . o . o  o . o . . O °  . . . .  . . . ° . . . .  

Fen_ 1 Fen_1-e I ... Fen_1-en_ ~ 
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between (17) and (18) is that  in (17) the subscripts in the 
first column consist of all the integers from 0 to n 
arranged in increasing order, whereas in (18), although 
the subscripts in the first column also start with 0 and 
are distinct, they are arbitrary otherwise. Evidently 
(18) includes (17). I t  is seen that  in the determinants 
(18) the subscripts in the first row are the same as those 
in the first column, but with opposite signs, and are 
arranged in the same order. The subscript in the ith 
row andj th  column is obtained by adding the subscript 
in the ith row and first column to the subscript in the 
first row and j th  column (ei~ = ell  ÷ el~). 

The determinants (18) may be used to obtain a bound 
on F~ .  Owing to the general form of (18), this bound 
may be expressed in terms of some or all of the coefficients 
whose subscripts precede e~ in numerical order or, if 
desired, in terms of coefficients having higher subscripts 
in addition to the previous ones. 

In order to obtain the bound on F ~  we apply to 
(18) the expansion theorem for determinants (Muir & 
Metzler, 1930, pp. 132-5): 

F~l-e 1 F~I-~ ~ ... F~I_~ ~ 

x Fe~-e l  F~2-e~ "'" F ~ - e ~  
. . . . .  . . . ° o ° ° ° ° . ° . . . . ° ° . . . ° o o ° . o o .  

F e n - e  I Fen-e~. . . .  F e n - e  n 

I F~ 1 Fel-~ 1 ... F~I-~_ 1 

_ "Fe2 Fe2-e 1 ... Fe2-en_ 1 
° o o ° o . o o . o . . . ° . . . . . . ° . . ° . . ° . o . . o °  

F~n Fe~_~I . . .  F~_~_I 

for (16) to hold is that the following determinants be 
non-negative (Dickson, 1930, pp. 81-8): t 

F 0  F - 1  A~'T-2 . . .  / ~ - n  

F1 F° F - I  " ' "  F - ( n - 1 )  />0 (n=0 ,1 ,2 , . . . ) .  
o o o ° o . o . . ° ° . o . . o o . ° . . ° . . . . . . . . . . . . .  ° 

Fn F~_I Fn_2 ... F 0 (17) 

Since anyrearrangement may be made on the subscripts 
of the independent variables of the hermitian forms 
(16), and since any of these variables may be set equal 
to zero, we may write the non-negative determinants 

F 0 F_~I F_e~ ... F_~  [ 

D =  Fel Fel-~l F~1-6~ "" F~I-~ I/>0 
! (n=0, 1,2 

(18) 
where the subscripts el ,  i = 1 , 2 , . . . ,  n are different from 
each other and from zero, but otherwise may take on 
arbitrary positive or negative values. The distinction 

* The hermitian forms in (16) may be considered as a subset 
of the three-dimensional set since the two subscripts k, l may 
be included in the notation if set equal to zero. It is apparent 
that there are three such subsets depending upon which two 
of the subscripts are set equal to zero. There are also three 
subsets for the two-dimensional problem depending upon which 
one of the three subscripts is set equal to zero. 

For fixed m, n ranges from zero to m -  1. 

F-e 1 Fel-e 1 ... Fen_l_e 1 

× P-e2 Fex-e~ "'" F~n-1-~ . (19) 
. . . . .  . . . o . o . . . . . . . o . . . . o  . . . . . . . . .  

F - e  n F e l -e  n . . .  F en_l-e  n 

The left side of (19) is the product of D and the deter- 
minant formed by omitting the first and last rows and 
columns of D. The first product on the right side of (19) 
is formed by multiplying the determinant which arises 
from omitting the last row and column in D by the deter- 
minant which arises from omitting the first row and 
column in D. The second product on the right side of 
(19) is formed by multiplying the determinant which 
arises from omitting the first row and last column in 
D by the determinant which arises from omitting the 
first column and last row in D. The rows and columns 
in the last determinant of (19) have been interchanged 
without changing its value. The determinants on the 
left side of (19), as well as the first two on the right side, 
are non-negative in view of (18). The last two deter- 
minants in (19) are complex conjugates since corre- 
sponding elements are complex conjugates. 

I f  the determinant on the left side of (19) is called 
A and the determinants on the right side called in order 
A1, A2, d, d, we get 

DA = A 1A~-- dd. (20) 

Since D and A are non-negative, 

dd~<AiAg. (21) 

By expanding d in terms of the minor of F ~ ,  we have 

[ d I= I Fen A -  A' l, (22) 
I 2 - 2  
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where 

a ' = ( - 1 ) "  

Fe i Fei-e i i~el-e ~ . . .  Fei_en_ i 

F~ F~_~ F~_ s ... Fs_en_~ 
. ° . , . . . . . ° . . o . ° , ° ° ° . ° . °  ° ° ° . . ° . ° ° ° ° ° . . . ° .  ° ° ° .  ° ° . .  ° ° .  

Fen_ 1 i~en_l--S 1 i~en_l--e ~ . . -  i~e..n_l_en_l 

0 Fen_el Fen_e~ ... Fen_en_i 
(23) 

Since A i and A~ are non-negative, (21) and (22) imply 

AiA ~. (24) [ FenA-  A' I < ~ 

Finally, since A is non-negative, this becomes 

I ~en-,~l <r, (25) 
where 3=-A'/A and r=A~iA~/A. The coe~cient Fen is 
bounded in terms of others having higher and lower sub. 
scripts, in general, w~thin a circle in the complex plane 
whose center is ~ and whose radius i~ r. 

To complete the proof that  (25), F o i> 0 and ] F~ ! ~< F0, 
include all inequalities based on the positiveness of the 
distribution function, it must still be shown that, con- 
versely, the system (25), F o 1> 0 and I F~  I ~< Fo imply 
the system (18). Assume then that F 0 1> 0, I F ~  [ ~< Fo, 
and that  (25) holds. Our proof is by induction. Since 
Fo>0  and [ F6~ [ ~< Fo, (18) is valid when n = 0  or 1. We 
make the induction hypothesis that  (18) is valid for all 
values of n less than some positive integer p. In (25) 
take n =p.  Then A, A i and A~ are all non-negative and 
the steps (21)-(25) are all reversible. Therefore (25) 
implies (21), and (20) becomes 

DA = AiA ~ -- c~ ~> 0. (26) 

Hence D 7> 0, (27) 

and (18) is valid for n = p .  Since p is arbitrary this 
completes the induction. 

The three-dimensional problem 
The hermitian forms (4) constitute the basis for 
formulating the relationships among the Fourier 
coefficients in the three-dimensional case. In complete 
analogy with (17), the necessary and sufficient con- 
dition for (4) to hold is that  an im 6 n i te set of determinants 
be non-negative (Dickson, 1930, pp. 81-8). Their 
construction will now be described. 

For any choice of the value of m in (4) the corre- 
sponding determinant is of the order ms. The indices 
now consist of number triples, each number being chosen 
from the set 0 , 1 , . . . , m - 1 .  In the first column, the 
indices consist of all m s triples arranged in '  dictionary' 
order, i.e. theindex a,/?, y precedes cd,/?', y '  if a < ~' or if 

=- ~', fl < fl' or ff a- -  cd,/?--/?', y < 7'- The indices in the 
first row are the same and in the same order a~ those in 
the first co lum n ,  but of opposite signs. The index in the 
ith row and the j th  co lumn ,  as in the one-dimensional 
case, is obtained by adding the index of the ith row and 

first column to that  of the first row and j th  column. As 
an example we write the determinant when m =-2: 

Foo o Foo ~ Fo~ o F ~  F~oo Fioi F~o F~i~ 

F00i Fo00 F0~ F0~0 . . . . . . . . . . . .  

Foxo Foxi Fooo Foo~ . . . . . . . . . . . .  1>0. (28) 
° . ° ° ° ° , ° . , ° ° ° ° . ° ° . , ° ° ° ° ° ° o ° ° . ° . . ° ° ° , ° . . o ° . o . . ° . ° o ° . ° ° .  

F m  Fno Fxol Floo . . . . . . . . .  Fo~ 

This is the three-dimensional analogue of (17) with 
n = 1. As before, any rearrangement may be made on the 
subscripts of the independent variables of the hermRian 
forms (4), and any of these variables may be set equal 
to zero, so that  we obtain the three-dimensional 
analogue of (18): 

Fooo F-61,-~I,-c1 ... F_6~_~_~  

i~e2,~2, C~ /~e2-ei,~- ~l,~-C1 "'" i~e~_~n,~_~,, ~ _ ~  >i 0. 
• , , . o . . . , o ° °  . . . . . .  , . o ° . ° ° ,  . . . .  . ° ,  ° . .  ° o ° ,  . .  ° . . . o ,  ° o .  ° . .  ° . . ° ° .  

Fen,~n,~n Fen-el, Yn-~l,~n-~ ... Fen-en,~In-~n,~n_Cn 
(29) 

The indices in the first column start with 0, 0, 0 and are 
distinct, but are arbitrary otherwise. The indices in the 
first row are the same as those in the first column, but 
with opposite signs, and are in the same order. The 
index in the ith row and j th  column is determined by 

By an analysis similar to that  given by equations 
(18)-(25) we obtain a bound for Fen .~ , , *  

A' ~ Aih~ (31) where 3 = ~ ,  r ..... A ' 

and A~, A~, A and A' are the three-dimensional 
generalizations of the corresponding one-dimensional 
determinants in equations (19) and (23). They are 
formed by adding the additional subscripts ~/and ~ as 
is indicated in (29). 

Just  as in the one-dimensional case, not only are (30), 
Fo00/> 0, and I F~I ~ Ci I ~< F000 necessary consequences of 
(29), but (30), F000 1> 0, and I F~l ~1 C11 ~< F000 are also 
sufficient to insure the validity of (29). 

I t  was pointed out in discussion with Dr A. L. Patter- 
son that the inequalities will not in all cases bound the 
phases of the coefficients, even ff the magnitudes of all 
the structure factors are known. This is easily seen to be 
true by considering the example in which 

c O  

~;I F ~  I < 2F00o" 
hkl 

- -  O O  

Here the distribution function is positive regardless of 
the phases of the Fa~. A situation as unfavourable as 

• This general type of inequality applies to all non-negative 
Fourier series and therefore may fred application to syntheses 
al.ong and projections upon lines and plaaes. 



J. KARLE AND H. HAUPTMAN 185 

this is not to be generally expected for electron densities 
in crystals, because of the high electron densities in the 
vicinity of the atomic nuclei. 

Discussion 
The foregoing theory may find application in the direct 
use of the derived inequalities. In addition, it will be 
indicated below that  the non-negative hermitian forms 
which represent the Fourier series constitute a working 
basis from which many new representations of a crystal 
structure may be developed. The well-known Patterson 
representation is such an example. 

Inequalities of successively increasing complexity 
may be obtained from (29) or (30). We write down the 
first four,*~ 

F000/> 0, (32) 

[ Fh~+h ~ i~a~ ~ h Fa2 ~24 i <~ 
' kl+/C2'/1+/2 - -  "~000 

Fhi+h~+h3, ki+k2+k3,li+12+l a J~ 

Fooo 
~h i klli 

~hl+h 2, kl+k2,ll+l 2 

~hlil~l 
l~000 
F h~. k S 12 

whose center is given by the second term in the left 
member and whose radius is the right member. 

In addition to limiting the phases of those coefficients 
whose magnitudes may be obtained from experiment 
the inequalities also bound the coefficients whose 
m~gnitudes are not known. If  the inequalities are used 
to continue the series, the resulting series will be 
positive only ff a new coefficient satisfies a set of in- 
equalities involving all the coefficients whose magni- 
tudes and phases have already been fixed. 

The inequalities (4) have been proven to be sufficient 
to insure tha t  p(x, y, z) be non-negative. The set of 
inequalities (30), (32) and (33) derived from (4), of which 
(34) and (35) are examples, is necessary and sufficient 
to insure the validity of (4). Therefore all systems of 

[ Fa~[ ~< F000, (33) 

F000 ~Ziii~ I ½ I F 0 0 0  -Fzsk2~ 2 ½ 
F~h Eooo ~F~k~z,. Fooo 

Fooo , (34) 

0 ~h2+h3, k2+k8.12+l 3 Fh3 ~313 

Fh2 k2~. 2'0o0 

~h~ k2b. ~-~000 F/t3~a ~ a 

Fh2+h 3, k2+/¢3,12+13 "Fh 3 k3l 3 -Fooo 

~'-,:~-~, 
Fooo Fooo 
-Fh  2 k 212 

- - _ ½ 

• ( 3 5 )  

Since the h,/c, l's are any integers, positive, negative 
or zero, it is seen that  any of the coefficients may be 
bounded in terms of sets of other coefficients, and in 
many different ways. In the general type of inequality 
of which the last two are examples, the coefficient which 
is being bounded lies in a circle in the complex plane 

* The h, k, 1 are s imply  re la ted to the  e, y, ~ in (30) and  m a y  
be a rb i t r a ry  posi t ive or negat ive  integers or zero. For  example,  
in (35) 

hi=gi--gi_ 1 , ki---?]i--~]i_l, l i~ i - -~ i_ l ,  
i = 1 , 2 , 3 ,  e0=~?0=~0=0. 

Certain choices of  h, k, 1 should be avoided  since t hey  m a y  lead 
to ei ther  (a) a zero denominator ,  or (b) a tr ivial  iden t i ty  which 
would  arise i f  the  triple el, ~]i, ~i were equal  to the  triple 
ei, y~, ~. or 0, 0, 0 in (29), making  two columns identical  in 
(29), or (c) a b o u n d  on Fh~ ~ in t e rms  of  itself. These choices m a y  
be avoided  in (35), for example,  b y  means  of  the  following rule: 
I f  the  number s  a, fl, y are chosen in any  w a y  from the sets 
0, 1 or I, 2 except  tha t  the  combina t ion  a---- 2, f l =  I, y = 2  is ex- 
cluded,  then  the  triples 

(zhl + flh2 + Yh3, akl + flk2 + yk3, all + fll2 + yl3 
are to be  different f rom 0, 0, 0. 

These inequali t ies m a y  be s t rengthened b y  dividing the  
Four ie r  coefficients b y  a funct ion  of  the  a tomic  scat ter ing 
factors  which effect ively concentra tes  the  scat ter ing mater ia l  
a b o u t  the  a tomic  co-ordinates (see H a r k e r  & Kasper ,  1948). 

inequalities based on the non-negative character of 
p(x, y, z) must be included in the set (30), (32) and (33). 

I t  is apparent that  symmetry considerations have 
not been introduced either for the purpose of repre- 
senting a non-negative Fourier series or for the purpose 
of deriving the inequalities. Symmetry relationships 
may be directly introduced into the inequalities. As an 
example, if the origin is assumed to be a center of 
symmetry,  Fhl n = F ~ .  Since, in general, Fh1~ = F~iT, 
all coefficients in (30) are real. In this case the in- 
equalities (33), (34) and (35) limit the coefficients to 
intervals on the real axis.* Inequality (34), for example, 
then becomes 

Fhl kiliFh~.k 12 
I Fhl+h2'kl+k2'll+12 --~000 '" 

2 2 ½ (F000_Fh~k~h) (Fo200 - Fh~k~z~). ~ 2  
~< (36) 

~000 

* I n  the  case of  a center  of  s y m m e t r y ,  some of  the  deter- 
minan t s  which arise m a y  be factored.  See Achyeser  & Kre in  
(1935). 
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For  the  special case h 1 -- h 2 -- h, 1¢ 1 -- ]¢2 -- ]¢,/1 = l~ -- [, this 
reduces to 

t _ I .< Fo%-- (37) 
~'~2h, 2k, 2~ ~0001 "~- "~-~000 

which implies 

Fooo F2h,2& 2~ ~ F000 Fooo, (38) 

( F a ~ )  ~' 1 1 F29'2~' 2---------~ . (39) 
or F~o0o ~<2 ~ 2 Fooo 

This is one of the inequalities derived by  Harker  
& Kasper  (1948, p. 72). 

Again, ff the  y axis is a twofold rotat ion axis then 
Fa~  = F ~ ,  and (34) m a y  be wri t ten 

[ F/~l-l-a2, ~¢1-1-~¢2, ~1-~ ~ 2 _F000 I 

~000 

In  other words, both F~+~.  ~+~,~+~ and F~_~,  ~+~, ~_~ 
lie inside the circle with center at F ~ I  Fh~JFoo o and 

tha t  the  distance between them is n~t greater  than  the 
diameter  of the  c~cle 

Fooo . (41) 

Tal~ing the special case h~ = h  2 = h, kz = -- k 2 = b, 
I~=l~=l, andnotingthatlF~l = 1 ~,~ I, this reduces to 

1F  ,o,  -Fooo I< I Fooo , (42) 

• 2( 0 00 - I I S) 
whence Fo00 Fen, o,2~ 

Fooo , (43) 

IFa~12 1 1F2h,0,2~ 
or ~ooo ~<2-t2 Fooo " (44) 

This is another  inequal i ty  derived by  Harker  & Kasper  
(1948). 

As a final example we take the case in which the y axis 
is a twofold inversion axis. Then F a ~ =  Fa~ and (34) 
becomes 

F ~ h  h F ~  ~z, 

< (  oo-I (Fo oo - I 
-FOO0 

As before, 

(46) 
.FOOO 

and the  case 

~ = - h 2 = h ,  k l = ~ 2 = k ,  ~ = - / 2 = / ,  

reduces to 

I F0 9.~ 0-- F000 I~ < 2(F~°°-  I Fhk~ [2) (47) 
, , Boo 0 ' 

and finally to the Harke r -Kaspe r  inequal i ty  

IFhk~-~00~ ~ 1 1 F ° ~  ~<=q , ,o (48) 
:~ . 2 Foo o 

Since the Harke r -Kaspe r  and Gillis inequalities were 
derived on the assumption t ha t  p is non-negative,  and 
since the inequalities (30) include all inequalities which 
can be obtained on this basis, it  was to have been 
ant ic ipated t ha t  the  Harke r -Kaspe r  and Gfllis in- 
equalities would be included in the set (30). 

Other types  of inequalities using symmet ry  pro- 
perties m a y  be obtained by  inserting the  addit ional  
relationships into the determinants  (29). For  example,  
ff the  y axis is a twofold rotat ion axis, whence 

Fhkz= F ~ ,  

and we choose a fourth-order de terminant  (29) in which 
F ~  and F ~  occur twice along the secondary diagonal, 
the  de terminant  m a y  be factored to yield* 

~(F000 +_ F~x+h.0,~+~) ~ (F000 _+ Fhrh~,0,h_~)t, (49) 

where either < holds for both  signs, or > holds for both  
signs, or = holds for a t  least one sign. This means t ha t  
Fh~ k~h lies either in the interior of two intersecting circles, 
or the exterior of both circles or on the boundary  of a t  
least one. This type  of inequal i ty  contains only informa- 
t ion which is a l ready included in the set (30). However,  
it  m a y  have more usefulness in application. We have 
not  exploited fur ther  the possibility of obtaining new 
types  of inequalities by  means of introducing s y m m e t r y  
relations into the determinants  (29) in which the  
coefficient of interest  and its complex conjugate occur 
more than  once. 

The application of any  linear t ransformations to the  
variables of the hermit ian forms (4) yields other 
hermit ian forms which are evident ly non-negative. The 
determinants  associated with these lead to different 
inequalities which are nevertheless equivalent  to the  
original ones. The inequalities related to these new 
hermit ian forms m a y  be more useful. This m a y  be 
i l lustrated by  deriving the hermit ian forms which 
represent a Pa t te rson  series from those which repre- 
sent the original series by  means of a linear t ransforma- 
tion. For  example, the  hermit ian  form containing two 
variables m a y  be t ransformed to the hermit ian  form 

* As before the h, k, 1 are simply relatod to the e, 7, ~ in (29) 
and may be arbitrary positive or negative integers or zero. 
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corresponding to the Patterson series in accordance with 
the following scheme: 

.F~ I o 

--> o F~,-IF,~[ ~ -> IFnl ~ Fo / "  

The first matrix represents the hermitian form 

Fo X1 X1 + Fn X1 X~ + F~ X~ X 1 + 2" 0 X9 X~ 

related to the original series, and the last matrix 
represents the hermitian form corresponding to the 
Patterson series. The second matrix is the diagonal 
form of the first and may be derived from it by a linear 
transformation. The third and fourth matrices are 
similarly related. Evidently a linear transformation 
relates the second and third matrices. 

The practical significance of this type of transforma- 
tion is that  the inequalities associated with the Patterson 

series involve only the magnitudes of the Fourier 
coefficients. These inequalities have the obvious 
advantage that  the quantities contained in them are 
directly derivable from experiment. Perhaps other 
intermediate cases occur in which inequalities arise tha t  
contain some complex coefficients and the magnitudes 
of others. Certainly, it is worth while investigating the 
further implications of linear transformation theory. 
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Intensity o f  X-ray  Ref lex ion  from Perfect and M o s a i c  A b s o r b i n g  Crystals  
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The variation of the integrated Bragg reflexion of perfect absorbing crystals with the degree of 
asymmetry of the reflexion, structure factor and wave-length is studied theoretically and compared 
with that of ideally mosaic absorbing crystals. I t  is shown that the integrated reflexion of a perfect 
crystal is always less than that of a corresponding mosaic crystal. If absorption is very large, or if the 
reflexion is very asymmetric, the integrated reflexion of the perfect crystal approaches asymptotically 
that of the mosaic crystal. Approximate formulae are given for the integrated reflexion as a function of 
asymmetry of the reflexion, structure factor, and absorption coefficient. I t  is suggested that accurate 
determinations of structure factors may be made by the use of asymmetric reflexions for which the 
integrated reflexion becomes more nearly independent of the texture of the crystals. 

1. Introduction 

Recent experiments on the variation of the integrated 
reflexion of crystals with wave-length of the X-rays 
(Wooster & Macdonald, 1948) and asymmetry  of the 
reflexion (Evans, Hirsch & Kellar, 1948) led the authors 
to a theoretical investigation of the integrated reflexion 
of perfect absorbing crystals as a function of the degree 
of asymmetry  of the reflexion,* structure factor and 
absorption coefficient. For a mosaic crystal, expressions 
have been derived previously for the variation of 
integrated reflexion with these factors (see James, 1948). 
For a perfect crystal the dynamical theory of X-ray 
reflexions, as developed by EwMd (1918, 1924), Kohler 
(1933) and yon Laue (1941), takes all these variables 
into account and leads to an expression for the intensity 

* A reflexion is asymmetric if the reflecting planes make an 
angle with the surface of the crystal. 

of the X-ray beam reflected by the crystal at  a parti- 
cular setting (e.g. Zachariasen, 1945). To obtain the 
integrated reflexion, it is necessary to integrate this 
expression over a range of settings of the crystal. Such 
an integration can be carried out analytically only in 
some special cases. Thus, when absorption is negligible, 
the well-known Darwin (1914) formula is obtained. 
When absorption is very large, it will be shown in 
a later section tha t  the integrated reflexion tends to 
equal that  for a mosaic crystal. In the general case the 
reflexion curves can be calculated and integrated 
graphically. Examples of such curves have been given 
by Prins (1930), Par ra t t  (1932), Renninger (1934,1937 a) 
Zachariasen (1945), etc., and Renninger has also per- 
formed the graphical integration in a few special cases. 

The present authors have attacked the problem in 
a general way. From Zachariasen's t reatment  of the 
dynamical theory, it follows tha t  the effects of degree 


